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Endogenous activity modulates stimulus and
circuit-specific neural tuning and predicts
perceptual behavior
Yuanning Li 1,2,3,7✉, Michael J. Ward3, R. Mark Richardson3,4,5, Max G’Sell6 & Avniel Singh Ghuman1,2,3

Perception reflects not only sensory inputs, but also the endogenous state when these inputs

enter the brain. Prior studies show that endogenous neural states influence stimulus pro-

cessing through non-specific, global mechanisms, such as spontaneous fluctuations of

arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing

and behavior as well. Here we use intracranial recordings from 30 pre-surgical epilepsy

patients to show that patterns of endogenous activity are related to the strength of trial-by-

trial neural tuning in different visual category-selective neural circuits. The same aspects of

the endogenous activity that relate to tuning in a particular neural circuit also correlate to

behavioral reaction times only for stimuli from the category that circuit is selective for. These

results suggest that endogenous activity can modulate neural tuning and influence behavior

in a circuit- and stimulus-specific manner, reflecting a potential mechanism by which

endogenous neural states facilitate and bias perception.
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Perception depends on not only sensory input, but also the
neural and cognitive state when a stimulus is presented.
Traditionally, this endogenous activity has been treated as

random biological noise1. However, studies in both humans and
animals demonstrate that rather than being a noise process,
endogenous activity reflects fluctuations of neural activity that
influence neural processing in a behaviorally relevant manner.
Specifically, endogenous fluctuations in neural activity influence
both the coarse aspects of the neural response to sensory input2–5

and the behavioral response to that input, including sensory
awareness and perceptual decisions6–12. Endogenous activity has
rich structure, reflecting the stimulus processing properties of the
local neural circuitry13, broad scale brain network architecture14,
and may reflect statistically optimal representations of the
environment15. Fluctuations in endogenous processes such as
arousal16–18 and alertness19,20 can influence stimulus processing
and behavior. Some theoretical accounts posit that fluctuations of
endogenous activity can facilitate stimulus processing in a
stimulus-specific manner; for example, some have hypothesized
that endogenous activity reflects predictive processes21,22. These
theories suggest that endogenous activity can modulate the
quality of the perceptual representation15,21, as reflected in sti-
mulus specific activity patterns or tuning. However, most studies
have primarily examined nonspecific mechanisms, such as
arousal and alertness16–20. Thus, there is a dearth of empirical
evidence testing whether endogenous processes can influence
neural tuning and ultimately influence behavior in a circuit and
stimulus-specific manner.

Previous studies in humans have established the relationship
between features of endogenous activity and the evoked response,
including oscillatory phase and power/amplitude of the event-
related response23–25 or blood oxygen-level dependent (BOLD)
signal26. “Endogenous neural state” is often operationalized in
these studies as the pre-stimulus neural activity. While these
studies show that pre-stimulus activity may affect the stimulus
evoked response, they do not establish whether it can modulate
the neural representation for stimuli in ways that are related to
perception, such as the strength of tuning for particular stimuli in
certain brain regions. A common way to study population-level
neural tuning is to use a multivariate discriminant model to assess
the separability of the population neural activity with regard to
different categories27,28. Specifically, discriminant models extract
critical dimensions in the space of the evoked response that
discriminate the preferred category from the others28. As such,
decoding accuracy may be considered a proxy for the strength of
neural tuning at the population level.

In this study, we design a specific two-stage discriminant
model and use intracranial electroencephalography (iEEG)
recordings to test three main concrete hypotheses sequentially:
(1) pre-stimulus activity modulates the decoding accuracy in
response to visual stimuli; (2) the same aspect of the pre-stimulus
activity that modulates decoding accuracy also correlates with
behavioral perception in a region-by-stimulus specific manner,
where endogenous activity in regions selective for a particular
stimulus will only correlate with behavior for that stimulus (e.g.
endogenous activity in regions selective for faces will correlate
with behavioral performance for face stimuli); (3) the aspect of
pre-stimulus activity that modulates decoding accuracy and
behavior is uncorrelated across regions selective for different
visual categories. Our results support these three hypotheses and
suggest that endogenous fluctuations can (1) modulate stimulus-
specific visual category tuning; (2) the same aspect of the activity
that modulates tuning also influences behavior; (3) that this
modulation does not reflect an unspecific phenomenon, such as
arousal, but rather differentially and independently influences
circuits selective for different categories of visual stimuli.

Additional analyses elucidate further details about what aspects of
the endogenous activity modulate stimulus-specific category
tuning and behavior.

Results
Category-selective iEEG electrodes. Data were acquired from 30
human neurosurgical patients with implanted iEEG electrodes
while they viewed grayscale images of faces, bodies, words,
hammers, houses, and scrambled non-objects and performed a 1-
back, repeat detection task. Electrical potentials from the iEEG
electrodes and the button press reaction time (RT) for the 1-back
task were recorded for all the participants. Stimuli were balanced
across categories and presented in a random order to reduce any
potential cognitive or strategic processes that might favor one
stimulus over another. This allowed us to probe the relationship
between endogenous activity, visual category tuning, and beha-
vior separately for different categories of stimuli, and separately
for the cortical circuits selective to these categories. Analyses
identified 246 iEEG electrodes selective for one of these visual
categories that were then used for the primary analyses examining
the effects of endogenous activity on category selectivity. These
iEEG electrodes were distributed across the cortex, though pri-
marily concentrated in the bilateral ventral temporal cortex
(VTC) (Fig. 1, Table 1).

Pre-stimulus activity modulates neural stimulus decoding.
How classification accuracy in these category selective electrodes
changed when the classifier was conditioned on the pre-stimulus
was then examined. Specifically, single-trial potential (stP), single-
trial broadband high-frequency activity (stBHA), and phases at
different frequencies were extracted from the pre-stimulus
activity. These aspects of the activity were used because the stP
is the closest to the raw data recorded, stBHA has been shown to
emphasize aspects of the activity most closely related to the
underlying neuronal population firing rates29,30, and prior studies
have emphasized that pre-stimulus phase is related to stimulus
response2–5. A two-stage model was used to modulate classifi-
cation boundary based on the pre-stimulus activity (described
below), and any resulting improvement in accuracy was assessed.
Because the pre-stimulus activity contains no information about
the upcoming stimulus category (see Supplementary Note 1),
classification accuracy can be improved using this model only if
the pre-stimulus activity contains information about the condi-
tional distribution of the post-stimulus response on a particular
trial (e.g. larger/lower variance, gain, etc.).

The algorithm is designed to use this pre-stimulus information,
if it is present, to adjust the classification boundary, i.e. trial-by-
trial tuning, on each trial to optimize classification (Fig. 1c; see
“Methods” for details). Comparing classification accuracy with
and without this adjustment tests the first hypothesis that
endogenous activity modulates neural tuning. In addition, this
adjustment provides a trial-by-trial measure of how much
influence pre-stimulus activity has on neural decoding accuracy,
which we term the “modulation index” (MI) (Fig. 1c). As an
example, one way in which the pre-stimulus information could
influence classification accuracy is to modulate the “gain” of the
neural population for a particular trial. In this example, the MI
would reflect the amount of gain modulation on a particular trial.
Note that the algorithm is sensitive to other types of modulations,
not just gain. Next the correlation between trial-by-trial MI and
behavioral reaction time on a simple perceptual task was
examined. This MI-reaction time correlation tests the second
hypothesis that the same aspect of the pre-stimulus activity that
modulates decoding accuracy also correlates with behavior.
Furthermore, the correlation of the MI between pairs of
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electrodes that record from areas selective for the same versus
different categories of visual stimuli was examined. This inter-
electrode correlation tests the third hypothesis that the aspect of
the pre-stimulus activity that modulates decoding accuracy is
stimulus-specific and thus uncorrelated across circuits selective
for different stimuli.

The results indicated that conditioning the model on pre-
stimulus activity improved the classification accuracy for all visual

categories, compared to the classification accuracy using only
post-stimulus activity (Fig. 2a, Table 1). Mean sensitivity index
d’= 1.06 without conditioning on pre-stimulus activity versus mean
d’= 1.19 after conditioning on pre-stimulus activity (t(245)= 12.39;
p < 1 × 10−10, paired t-test, two-sided). One potential confound is
the pre-stimulus activity could reflect cognition related to the
previous trial and particularly repetitions of the same condition. For
example, if subjects were presented two face trials in a row, the
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Fig. 1 Behavioral task, the category-selective electrodes, and the algorithm framework. a Experimental paradigm in which the subject is shown a series
of images and performs a 1-back exact image repeat detection task. 180 images from 6 categories (faces, bodies, words, tools, houses, scrambled non-
objects) were used. Each image was presented for 900ms, with 900ms inter-stimulus interval. b The lateral and ventral views of the locations of the 246
category-selective electrodes mapped onto a common brain surface. Color coded according to the category-selectivity of each electrode. Size of the marker
indicates the relative strength of category-selectivity. The category-selectivity was determined based on (1) significant sensitivity index (d′) for certain
category using a 6-way classifier and (2) larger event-related potential (mean stP) or broadband high-frequency activity (mean stBHA) over other
categories. (c) Illustration of the statistical model that uses pre-stimulus to modulate trial-by-trial classification boundary. x1, x2 are post-stimulus features,
solid black line indicates the critical discriminant dimension extracted from post-stimulus distributions that maximally separate the two categories, dashed
lines indicate the classification boundary. In this algorithm, a classifier is first trained on just the post-stimulus activity (left panel, equivalent to no pre-
stimulus modulation: green and orange dots are samples from two categories; dashed curves are the density plots of the two categories; dashed gray line is
the post-stimulus classification boundary). The model then learns the relationship between the optimal classification boundary and the pre-stimulus
activity pattern. The right panel shows an example case where the opaque dots and the solid density plots are the conditional distribution given a particular
pre-stimulus activity. In this case, the optimal decision boundary (dashed blue line) is shifted to the right from the original boundary (dashed gray line). The
model is sensitive to other types of shifts that may be associated with different pre-stimulus activity patters as well, such as a relationship between the pre-
stimulus activity and the variance of the neural response. The size of this shift is the modulation index (MI; blue arrow).

Table 1 Comparisons of the classification results for each category.

Category Bodies Faces Words Tools Houses Scrambled non-objects

# of electrodes 9 56 92 16 37 36
d′ (evoked only) 1.1822 1.3957 0.9252 0.7289 1.0585 0.8219
d′ (evoked + endogenous) 1.3093 1.5072 1.0628 0.8334 1.2046 1.0105

t-stat (paired t-test) 2.7173 4.9466 7.6066 3.6431 5.1421 5.2407
p-value (two-sided) 0.0264 <10−5 <10−5 0.0024 <10−5 <10−5
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pre-stimulus activity for the second trial could reflect lingering
activity from the first trial. This potential confound was addressed
by demonstrating that classification accuracy improves with
inclusion of the pre-stimulus activity, even after accounting for trial
order effects, particularly repetitions of the same condition
(Supplementary Table 1). These results show that critical features
of pre-stimulus activity relate to the strength of neural tuning and
that modifying the discriminant model based on this relationship
improves classification accuracy. Therefore, these results support the
first hypothesis that endogenous activity modulates the degree of
category tuning in response to visual stimuli.

Pre-stimulus activity predicts perceptual behavior. The neural
decoding accuracy is believed to reflect the quality of the neural
representation31, or population tuning, which in turn influences
the quality of perception32–34. To make a connection between the
aspect of pre-stimulus activity that modulates neural decoding
accuracy and perceptual behavior, the degree to which the algo-
rithm adjusted the classification boundary on a trial-by-trial basis
was determined (the aforementioned “modulation index”; MI)
and compared to behavioral reaction times. Reaction times were
18.7 ms faster on average for the bottom quarter of trials than the
top quarter of trials indexed by MI for the “preferred” condition
(e.g. face trials for electrodes recording from face selective
regions, word trials for electrodes recording from word selective
regions, etc.; RTbottom= 663.2 ms, RTtop= 681.9 ms, p= 0.014,
permutation test), but was not significantly different for the non-
preferred condition (e.g. non-face trials for electrodes recording
from face selective regions, etc.; RTbottom= 669.9 ms, RTtop=
669.6 ms, p > 0.1, permutation test; Fig. 2b). Furthermore, the MI

was significantly correlated to reaction times on a trial-by-trial
basis for the preferred condition (Fig. 2c; mean Spearman’s rho =
0.051, t(245) = 2.78, p= 0.0058, two-sided), but not the non-
preferred condition (Fig. 2c; mean Spearman’s rho = 0.0031, t
(245) = 0.376, p= 0.71, two-sided). The mean correlation coef-
ficient of preferred condition was significantly larger than the
mean correlation coefficient of non-preferred condition (t(245) =
2.35, p= 0.02, paired two-sided). Note that for the preferred
conditions in Fig. 2b, c, only 1/6 of the repeated trials were
included in the analysis (1 out of 6 categories and 20% of trials
were repeat, so on average 20 trials in each block per subject per
electrode). As a result, larger variance for preferred conditions
was seen in Fig. 2b, c, compared to the rest of Fig. 2. These results
show that the same aspect of the pre-stimulus activity that
influences neural decoding accuracy in a region also correlates
with the trial-by-trial response time on a perceptual task in a
region-by-stimulus specific manner, which supports the second
hypothesis.

One question is whether the correlation between MI and
behavior reflects a general relationship between post-stimulus
variability and behavior or whether the aspect of the post-
stimulus discriminant activity modulated by the pre-stimulus is
particularly correlated to behavior. No significant correlation was
found between the loadings of the post-stimulus features in the
classifier and the RT for trials in the preferred category of the
electrodes, significantly lower than the correlation between the
MI and the RT (mean Spearman’ rho=−0.019 for post-stimulus
features-MI correlation; comparing the pre-stimulus MI-RT
correlation to the post-stimulus-RT correlation t(245) = 2.76,
p= 0.006, paired two-sided). This suggests that aspect of the
post-stimulus discriminant activity that is modulated by the
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Fig. 2 Pre-stimulus activity modulates post-stimulus tuning and predicts behavior. a Bar plot of the averaged difference in category classification
accuracy (mean sensitivity index difference Δd′) for each category. Δd′ is the accuracy conditioning on pre-stimulus activity (post-stimulus + pre-
stimulus) minus the accuracy using only post-stimulus activity (post-stimulus only). Each colored dot represents the results from a single electrode (n = 9,
56, 92, 16, 37, 36, respectively, for each plot). See Table 1 for detailed paired comparison results for each category. b The difference in reaction time in
between high MI trials (top quarter) and low MI trials (bottom quarter) in the preferred condition of the electrode (left) and in the non-preferred condition
of the electrode (right). Each colored dot represents the averaged RT difference from one single electrode, 246 samples in total for each bar plot. c The
correlation coefficients between modulation index (MI) and trial-by-trial reaction times at each electrode for the preferred condition of the electrode (left)
and for the non-preferred conditions of the electrode (right). Each colored dot represents the correlation coefficient from one single electrode, 246 samples
in total for each bar plot. d The correlation coefficients (Spearman’s rho) for cross-electrode correlation in MI between a pair of electrodes with the same
category selectivity (left) versus a pair of electrodes with different category selectivity (right). Each colored dot represents the correlation between a pair of
electrodes. Data are presented as mean values ± s.e.m.; * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.1, two-sided paired t-test for (a) and (c), permutation
test for (b) and (d). The dots in (a–d) are colored according to the corresponding selective category of the electrode, using the same color scheme as in
Fig. 1b. (Source data are provided as a Source Data file.).
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pre-stimulus is particularly correlated to behavior and not a result
of a generic relationship between stimulus discriminant activity
and behavior.

Notably, while the majority of the category-selective electrodes
were located in VTC similar effects are seen in the non-VTC
recordings as well. Specifically, when considering only non-
temporal recordings (15 electrodes in frontal and parietal areas),
the mean sensitivity index d’ = 1.00 and 0.83 with and without
conditioning on pre-stimulus activity respectively (t(14) = 3.76,
p= 0.002, two-sided). Furthermore, the reaction times were
55.9 ms faster on average for the bottom quarter of trials than the
top quarter of trials indexed by MI for the preferred condition
(did not reach p < 0.05, but the effect is in the same direction as
in VTC). The main results also hold if, conversely, only VTC

electrodes are considered (see Supplementary Table 2). Taken
together, these results suggest that the effects of pre-stimulus
activity on classification accuracy and behavior reported here are
a general property of the cortex, both in VTC and outside of these
regions.

The pre-stimulus modulation is circuit-specific. If fluctuations
of endogenous activity can influence neural coding and behavior
in a stimulus-specific manner, then these fluctuations should be
uncorrelated across regions selective for different visual stimulus
categories. In particular, endogenous fluctuations could be a
reflection of changes in global cognitive state, such as arousal, or
general task effects, such as changes in alertness. In these cases,
the MI would correlate across the brain regions involved in the
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Fig. 3 Different aspects of pre-stimulus features contributed to the modulation model. a From left to right, bar plot for the averaged increasement
classification d’ from post-stimulus only classification across all electrodes for: (all) including all pre-stimulus features, (stBHA) including the pre-stimulus
stBHA features only, (stP) including the pre-stimulus stP features only, (Ph) including the pre-stimulus phase features only, (stBHA+stP) including the
pre-stimulus stBHA and stP features, (stBHA+Ph) including pre-stimulus stBHA and phase features, (stP+Ph) including the pre-stimulus stP and phase
features. Each sample dot in the plot represents the averaged value from one single electrode, n = 246 samples in total for each plot; data are presented as
mean values ± s.e.m.; *** p < 0.001, two-sided paired t-test, Bonferroni correction for multiple repeated tests. (From left to right, p = 6 × 10−17, 3 × 10−29,
4 × 10−25, 7 × 10−18, 2 × 10−20, 4 × 10−19, 8 × 10−19, respectively). b From left to right, bar plot for distributions of: (1) the averaged z-scored stBHA power,
(2) the standard deviation of z-scored stBHA power, (3) the averaged absolute value of stP, (4) the standard deviation of stP, within [−500−ms,−100ms]
pre-stimulus time window for low MI and high MI trials in each electrode. Each sample dot in the plot represents the averaged value from one single
electrode, n = 246 samples in total for each plot; data are presented as mean values ± s.e.m., *** p < 0.001, permutation test. (From left to right, p = 7 × 10−6,
2 × 10−8, 3 × 10−23, 4 × 10−16, respectively. c The averaged empirical probability of having non-zero weights in the sparse GLM model for different pre-
stimulus phase features of different frequency. Shaded area indicates 95% confidence interval under random feature selection. (Source data are provided as a
Source Data file.).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17729-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4014 | https://doi.org/10.1038/s41467-020-17729-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


task, regardless of category-selectivity of a particular region.
However, cross-electrode correlation in MI was weakly, though
statistically significantly, correlated only between electrodes that
share the same category-selectivity (mean Spearman’s rho =
0.076, p < 0.001, permutation test) and not significantly correlated
for electrodes of different category-selectivity (mean Spearman’s
rho=−0.0092, p > 0.1, permutation test; Fig. 2d). Significantly
larger correlation was seen between electrodes of the same
category-selectivity than electrodes of different category-
selectivity (t(520) = 7.54, p < 1 × 10−10, two-sided; Fig. 2d). As
a result, the pre-stimulus modulation is partially a reflection of
weakly correlated fluctuations within category-specific networks,
but it does not seem to reflect non-specific processes, such as
arousal or alertness, because correlations are not seen across all
category selective electrodes. The network specific, but not global,
correlation supports our third hypothesis.

Activity features that contribute to pre-stimulus modulation.
The results above support our three major hypotheses and shows
that pre-stimulus activity can influence neural tuning and beha-
vior in a stimulus-specific manner. A number of questions
regarding the nature of the pre-stimulus activity that influences
decoding accuracy and perception remain. To evaluate the con-
tribution of different aspects of the pre-stimulus features, the
same model was applied using different subsets of the pre-
stimulus features. This analysis showed that the pre-stimulus stP,
which is dominated by the low frequency component, the pre-
stimulus stBHA, which reflects the power of high frequency
broadband activity, and the pre-stimulus oscillatory phase all
contributed to the modulation of category decoding accuracy,
with the stBHA showing the highest increase in accuracy
(Fig. 3a). The trials were then ranked by their MI and the mean
and standard deviation in their pre-stimulus stP and stBHA were
compared. The bottom quarter of trials had significant lower
mean and variance for both stBHA and absolute stP during the
pre-stimulus period, compared to the top quarter of trials
(Fig. 3b). Given that lower MI trials correspond to shorter RTs,
the decreased pre-stimulus mean and variance may be an indi-
cation of lower pre-stimulus noise35 or fluctuations of stimulus-
specific attention36, which leads to shorter RTs. A further analysis
into the distribution of non-zero weights in the two-stage GLM
suggests that the alpha/beta phases, from 10 to 25 Hz with a peak
at 15 Hz, showed a consistent pattern of modulation of category
decoding accuracy (Fig. 3c), suggesting a role for the phase of
endogenous oscillations in this frequency range when visual sti-
muli are presented. Recent studies have shown that deployment
of endogenous attention reflects neural coherence in a similar
frequency range as the one seen in the current study37, suggesting
the pre-stimulus facilitation seen here may reflect fluctuations of
endogenous attention.

The temporal scale of the modulation effect. Previous studies
have shown that infra-slow fluctuations of activity, seen in
“resting-state” studies, are associated with fluctuations of beha-
vior and perception38–40. If the aspect of the pre-stimulus activity
that modulates neural decoding accuracy and behavior seen in the
present study reflected these intra-slow fluctuations, there would
be significant auto-correlation within each channel between
consecutive trials for the MI. The auto-correlation of MI across
consecutive trials for each electrode was computed, and 40 out of
the 246 electrodes (~15%) showed significant auto-correlation
across trials at p < 0.05 uncorrected level (Fig. 4). While this is
significantly more than would be expected by chance, it is a
relatively small subset of the electrodes, suggesting that there is a

mix of infra-slow and transient effects in the pre-stimulus
activity, with transient effects being the dominant proportion.

Discussion
These results demonstrate that pre-stimulus activity modulates
the degree of category tuning on the trial-by-trial basis in
category-selective areas of the cortex. Previous studies have
mainly focused on the overall correlation between the pre-
stimulus activity and the evoked response in features including
phase and oscillatory power of the event-related response23–25,
often not definitively localized to the regions that process the
stimulus class being presented41. The results here demonstrate
that pre-stimulus activity modulates the post-stimulus activity in
the regions that are selective for the stimulus being viewed.

The results also show that the degree of influence on the neural
classification accuracy from the pre-stimulus activity correlates
with behavioral reaction time specifically for the category of sti-
mulus that a particular region processes. Prior work has shown
that different aspects of the pre-stimulus activity, including phase
and amplitude of the event-related response/field7,42, as well as
BOLD signal8,43, correlate to behavioral performance. However,
prior studies leave unclear whether the same aspects of pre-
stimulus activity that modulate category-tuning also give rise to
the influence on behavior as these two different effects have
mostly not been linked to one another. The results here
demonstrate that the two processes can be attributed to the same
aspects of pre-stimulus activity in the same local category-
sensitive circuit. The results demonstrated a significant relation-
ship between the MI and the reaction time in detecting repetitions
in the category that the electrode is selective for. Furthermore, no
significant correlation was found between the MI and the reaction
time with respect to categories that the electrode is not selective
for, suggesting that this effect is not global and non-specific, such
as reflecting arousal or alertness, but restricted to specific func-
tional neural circuits.

Taken together these results suggest a model for how endo-
genous states can influence neural activity to modulate the per-
ception of specific visual stimuli. If the stimulus is presented when
endogenous activity in regions selective to that type of stimulus is
relatively low, as indicated by lower pre-stimulus mean and
variance, and when the phases of endogenous oscillations in the
alpha/beta frequency range are optimal, then neural tuning will
be stronger and perceptual behavior will be facilitated. The size of
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Fig. 4 The pre-stimulus modulation effect is mostly transient. The
temporal auto-correlation for MI across consecutive trials in each category-
selective channel. The blue solid line indicates the average auto-correlation
across all electrodes. 40/246 electrodes showed significant auto-
correlation (p < 0.05, uncorrected, two-sided t-test). The dashed lines
correspond to p = 0.05 threshold, uncorrected. (Source data are provided
as a Source Data file.).
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the behavioral modulation with endogenous activity (~20 ms) is
on par with the magnitude of the behavioral facilitation seen with
certain kinds of visual priming44 and endogenous visual atten-
tion45, suggesting that while the effect may be relatively small, it
may play an important role in perception. The results of the
present study cannot completely exclude the possibility that the
behavioral correlation seen is due to endogenous activity mod-
ulating decision processes rather than perceptual processes.
However, most of the electrodes examined were located in VTC
regions associated with visual perception. Furthermore, the
multivariate pattern of activity in VTC, which is the same aspect
of the signal that pre-stimulus activity modulates in this study,
has previously been linked to the subjective perceptual repre-
sentation46. The location of the electrodes and the aspects of the
neural signals examined suggest that the perceptual rather than
decision processes were influenced by endogenous activity here.

Given the random stimulus presentation in the present study,
facilitating one stimulus over another on a trial-by-trial basis does
not provide a behavioral advantage. Therefore, it is unclear if the
endogenous activity seen here reflects stochastic dynamics in
brain circuits, such a fluctuations of neurotransmitter levels47, or
strategic processes, such as fluctuations in stimulus-specific
attention or preference48, that may reflect pattern detection and
strategies primates adopt even when stimuli are presented ran-
domly49. While in the present study a strategic process would not
provide a behavioral advantage, for example visual perception in
familiar environments that one commonly finds oneself in, such
as one’s house or office, facilitating the processing of particular
stimuli may be advantageous. In these contexts, the stimulus-
specificity of endogenous optimization may reflect a prediction of
the next stimulus viewed based on internal models of the envir-
onment22. The magnitude of the effects seen here may be larger
in cases where facilitating a particular stimulus over another was
behaviorally useful. Active sensing in natural settings may orga-
nize the processes that underlie this optimization50 and/or these
active processes may synchronize to fluctuations in endogenous
activity so that deployment of overt and covert attention occurs at
temporally optimal times for information gathering51.

One hypothesis about how endogenous fluctuations modulate
neural responses and behavior is that they may reflect a priming-
like pre-activation of a predicted stimulus22, for example a prior
in the Bayesian sense52. However, pre-activation would likely
correspond to a higher pre-stimulus response in regions that
process a particular stimulus type, not lower as was seen here.
Without single unit recording we cannot fully exclude the alter-
native possibility that the reduced mean and variance of the pre-
stimulus activity could be a result of desynchronization that can
go along with enhanced frequency of action potentials53,54.
However, prior studies in early visual cortex in monkeys also
showed that lower pre-stimulus activity is associated with
improved tuning and behavior, though in a non-specific manner
associated with attentiveness19,20,55. The results of the present
study suggest that the effects seen in early visual cortex in single
units in monkeys may also occur in a stimulus- and circuit-
specific manner in higher-level visual regions and in regions
outside of visual cortex in humans. Lower pre-stimulus mean and
variance may reflect an optimization of the dynamic range or
gain55, potentially through normalization56 in neural circuits
responsible for processing particular stimulus types to enhance
information pick-up for those stimuli57. While reduced pre-
stimulus activity and variance is not consistent with a priming-
like prior, the results here do provide a potential foundation for
endogenous activity to reflect predictive processing21, though
through a non-priming mechanism, such as circuit-specific
optimization of processing. Note that while these results are not
sufficient evidence of predictive processing, for the hypothesis

that endogenous activity is a signature of predictive coding to be
correct22, stimulus and circuit level modulation of tuning is a
necessary feature of endogenous activity. The results here provide
evidence of this necessary (though not fully sufficient) feature of
endogenous activity needed for this activity to reflect predictive
processes.

One methodological note about this work is that the two-stage
statistical model described here has potential applications beyond
examining the effects of pre-stimulus activity on discriminant
information. Specifically, this method can be used to examine the
effects of any multivariate signal on local discriminant informa-
tion on a trial-by-trial basis. For example, this algorithm could be
used to examine how activity in one region modulates dis-
criminant information in another region, a form of multivariate
functional connectivity58,59. Much like MI here, using this
method for multivariate functional connectivity would yield a
trail-by-trial measure of how much one region influences the
representation in another region. That trial-by-trial measure of
interregional influence could then be correlated to external vari-
ables, such as behavior, as was done in the present study between
MI and reaction time.

Taken together, our results provide empirical support for a
mechanism in which the present neural state influences the
perception of sensory input in a stimulus-specific manner by
modulating the tuning properties of neural circuits selective for
those stimuli.

Methods
Subjects. The experimental protocols were approved by the Institutional Review
Board of the University of Pittsburgh. Written informed consent was obtained
from all participants. 30 human subjects (11 male, 19 female) underwent surgical
placement of subdural electrocorticographic electrodes or stereotactic electro-
encephalography (together electrocorticography and stereotactic electro-
encephalography are referred to here as iEEG) as standard of care for seizure onset
zone localization. The ages of the subjects ranged from 19 to 64 years old (mean =
38.2, SD= 11.9). None of the participants showed evidence of epileptic activity on
the electrodes used in this study nor any ictal events during experimental sessions.

Stimuli. In each session, 180 images of faces (50% male), bodies (50% male), words,
hammers, houses, and phase scrambled faces were used as visual stimuli. Each of
the six categories contained 30 images, and each image was presented twice. At
random, 1/3 of the time an image would be repeated, which yielded 480 inde-
pendent trials in each session.

Paradigms. In the experiment, each image was presented for 900 ms with 900 ms
inter-trial interval during which a fixation cross was presented at the center of the
screen (all images were scaled such that their longest dimension subtended
approximately 10˚ of visual angle). Participants were instructed to press a button
on a button box when an exact image was repeated (1-back image repeat not
category repeat), and their reaction time (RT) was recorded as the period from
stimulus onset until the button press in the 1-back task. Paradigms were pro-
grammed in MATLABTM using Psychtoolbox and custom written code. All stimuli
were presented on an LCD computer screen placed approximately 150 cm from
participants’ heads.

Data preprocessing. The electrophysiological activity was recorded using iEEG
electrodes at 1000 Hz. Common reference and ground electrodes were placed
subdurally at a location distant from any recording electrodes, with contacts
oriented toward the dura. The 60 Hz line noise was removed using a fourth order
Butterworth filter with 55–65 Hz stop-band. Single-trial field potential (stP) signal
was extracted by band-passing filtering the raw data between 0.2 and 115 Hz using
a fourth order Butterworth filter to remove slow and linear drift, and high fre-
quency noise. The stP signal was sampled at 1000 Hz.

The single trial broadband high-frequency (stBHA) activity was defined as the
mean z-scored PSD across 40–100 Hz on each trial. Specifically, power spectrum
density (PSD) at 2–100 Hz with bin size of 2 Hz and time-step size of 10 ms was
estimated for each trial using multi-taper power spectrum analysis with Hann
tapers, using FieldTrip toolbox60. For each channel, the PSD at each frequency was
z-scored with respect to the mean and variance of the baseline activity between
experimental runs to correct for the power scaling over frequency at each channel.
The stBHA was sampled at 100 Hz.

We define the neural activity within the [−500, −100] ms interval relative to the
stimulus onset as the pre-stimulus activity, and the neural activity within the
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[100, 500] ms interval relative to the stimulus onset as the post-stimulus activity.
Therefore, we have 400 stP features and 40 stBHA features for both the pre-
stimulus and post-stimulus activity. Specifically, there is potential signal leakage
caused by the low-pass and band-pass filters, including hardware filters. Thus, we
exclude the time interval around stimulus onset out of an abundance of caution to
ensure there was no spillover of pre-stimulus activity into the activity used as the
stimulus response (and vice versa) in a conservative manner.

The pre-stimulus phase information was also extracted from each trial.
Specifically, discrete time Fourier transform was applied to the raw signal in the
[−500, −100] ms time interval, which had a total length of 400 points sampled
at 1000 Hz. As a result, the phase information between 0 and 1000 Hz was
extracted with a step-size of 2.5 Hz. The phases from 0 to 150 Hz were used as
the pre-stimulus phase features yielding 60 phase features (60= 150/2.5).

To reduce potential artifacts in the data, raw data were inspected for ictal
events, and none were found during experimental recordings. Trials with
maximum amplitude 5 standard deviations above the mean across all the trials
were eliminated. In addition, trials with a change of more than 25 μV between
consecutive sampling points were eliminated. These criteria resulted in the
elimination of less than 1% of trials.

Electrode localization. Coregistration of grid electrodes and electrode strips was
adapted from the method of Hermes, Miller61,62. Electrode contacts were seg-
mented from high resolution post-operative CT scans of patients coregistered
with anatomical MRI scans before neurosurgery and electrode implantation.
The Hermes method accounts for shifts in electrode location due to the
deformation of the cortex by utilizing reconstructions of the cortical surface
with FreeSurferTM software and co-registering these reconstructions with a
high-resolution post-operative CT scan. SEEG electrodes were localized with
Brainstorm software63 using post-operative MRI co-registered with pre-
operative MRI images. Specifically, electrodes from the VTC were the ones
located in inferior temporal gyrus, fusiform gyrus, parahippocampal gyrus and
the sulci in between.

Electrode selection. Category-selective electrodes were selected based on a 6-way
classifier. Specifically, we trained a multinomial logistic regression model to classify
the post-stimulus neural activity with respect to the six different categories from
each other. The true positive rate and false positive rate for each category were
estimated using 5-fold cross-validation. The sensitivity index (d′) for each category
was then computed as d′ = Z(true positive rate)−Z(false positive rate), where Z(x)
is the inverse function of the cumulative density function of standard normal
distribution. An electrode was selected as category-selective if the maximum d′
across all categories is greater than 0.5 (p < 0.01, permutation test). The selected
electrode was then assigned to the category with maximum d′ . To avoid the rare
case where an electrode showed visual response to all but one category, we add
additional constraint that the assigned category should have larger event-related
potential (mean stP) or broadband high-frequency activity (mean stBHA) over
other categories.

Two-stage generalized linear model (GLM). We considered the neural activity
within the [−500, −100] ms pre-stimulus time interval as proxy for the endogenous
activity, noted as Xpre 2 RN ´T1 , where N is the number of trials and T1 is the
number of features in the pre-stimulus time window; and we used neural activity
from the [100, 500] ms time interval relative to stimulus onset as the post-stimulus
evoked activity that encodes category information, noted as Xevk 2 RN ´T2 , where
T2 is the number of features in the post-stimulus time window.

We designed a two-stage regularized GLM (logistic regression) model to
evaluate the pre-stimulus modulation on category representation (see below for the
pseudocode of the main algorithm). A logistic regression model predicts the
category of the stimulus y using a linear combination of the neural features X and a
logistic function64. Specifically, P y ¼ 1jXð Þ ¼ 1= 1þ expð�XβÞð Þ.

In the first stage, logistic regression was directly applied to the post-stimulus
activity to extract the critical discriminant dimensions (βevk) for category
classification. In other words, we solved for

β*evk ¼ argmin
βevk

‘ βevk
� �þ λ1Pα βevk

� �
; ð1Þ

where ‘ βevk
� � ¼ �yTXevkβþ 1T log 1þ exp Xevkβð Þð Þ is the cross-entropy loss for

logistic regression64, and Pevk
α βevk
� � ¼ 1�αð Þ

2 βevk
�� ��2

2
þα βevk

�� ��
1
is the standard elastic-

net penalty term to account for the high-dimensional settings, and α is the elastic-net
mixing parameter that balancing between ridge (L2 term) and lasso (L1 term)
regularization65. In our case we set α= 0.95 to have a penalty that is primary lasso. λ1
is the regularization hyperparameter to be chosen based on cross-validation (see below
for a detailed description of cross-validation). This first stage results in a trial-by-trial
neural metric, Xevkβevk, which corresponds to the signed distance to the classification
boundary and quantifies the post-stimulus category selectivity.

In the second stage, we fixed the optimal dimension β*evk and optimized the
model to modulate classification boundary along the critical discriminating

directions found in the first stage, based on the pre-stimulus activity. Specifically,
we solved

β*pre ¼ argmin
βpre

‘ β*evk; βpre

� �
þ λ2PαðβpreÞ ð2Þ

where ‘ β*evk; βpre

� �
¼ �yT Xevkβ

*
evk þ Xpreβpre

� �
þ 1Tlogð1þ expðXevkβ

*
evk

þXpreβpreÞÞ, and Ppre
α βpre

� �
is a similar elastic-net penalty but with group structure

to account for the phase features (see below for a detailed description of the penalty
structure). λ2 is the regularization hyperparameter to be chosen based on cross-
validation (see below for a detailed description of cross-validation). This stage
provides a neural metric Xpreβpre in pre-stimulus activity that quantifies the amount
of influence from pre-stimulus activity on the post-stimulus category selectivity on
a trial-by-trial basis. We defined MI= Xpreβpre as the pre-stimulus modulation
index (MI).

The (group) elastic-net penalty. For the post-stimulus part, we only considered
the stP and stBHA features, noted as xevk ¼ xPevk; x

BHA
evk

� �
, with the corresponding

weights βevk ¼ βPevk; β
BHA
evk

� �
, and we applied regularization term Pevk

α βevk
� � ¼

1�αð Þ
2 βevk

�� ��2
2
þα βevk

�� ��
1
in (2). For the pre-stimulus part, we used stP, stBHA and

phase features, noted as xpre ¼ xPpre; x
BHA
pre ; xphasepre

h i
, and the corresponding weights

βpre ¼ βPpre; β
BHA
pre ; βphasepre

h i
. Assume that we have phase [θ1,…,θK], where θ∈(−π, π],

corresponding to frequencies of interest [f1,…,fK]. To transfer the circular phase value
onto the real axis in order to facilitate the ‘1-norm penalty, we consider feature vector

xphasepre ¼ sinθ1; cosθ1; ¼ ; sinθK ; cosθK½ �, where sinθ,cosθ ∈[−1,1], and group lasso

penalty term G βphasepre

� �
¼ ffiffiffi

2
p PK

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βphasepre;ði;1Þ
� �2

þ βphasepre;ði;2Þ
� �2

r

, where

[βphasepre;ði;1Þ; β
phase
pre;ði;2Þ] are the pair of weights corresponding to phase feature pair [sinθi,

cosθi]. This group structure would ensure that the penalty is invariant to the overall
direction of the phase, which a typical ‘1-norm penalty would not do. As a result, the
group elastic-net penalty for the pre-stimulus weights can be written as

Ppre
α βpre

� �
¼ 1�αð Þ

2 βpre

���
���
2

2
þα βPpre

���
���
1
þα βBHApre

���
���
1
þαG βphasepre

� �
.

Nested cross-validation (CV) procedure. When fitting the two-stage GLM, we
used a nested cross-validation procedure with two levels of CV. At the first level
of CV (CV-1), we randomly split the data evenly into 5 folds. For each CV
iteration, one fold of the data was used as the testing set while the other four folds
were used as the training set. The second level of CV (CV-2) was applied to the
training set to select hyperparameters in the model. We further split the training
set into 10 folds and select hyperparameters based on minimizing the overall
deviance, i.e. the loss function ‘ in equations (1) and (2), using block coordinate
descent algorithm66 in CV-2. Specifically, this procedure was repeated two times
to select λ1 and λ2 sequentially. After selecting the optimal hyperparameters, the
entire training set was used to fit the two-stage GLM with the optimal hyper-
parameters. Then the fitted model was applied to the testing set to estimate the
classification accuracy and single-trial MI. By iterating through all 5 folds at CV-
1, we can get estimated single-trial MI for every single trial when they were
included in the testing set. This procedure was applied to all cases of analysis
where the two-stage GLM was used in order to get an unbiased estimation of the
single-trial MI and the overall classification accuracy. The flow of the entire
algorithm is shown below.

Training and evaluating the two-stage GLM. Here we describe in pseudocode
the overall flow of training and evaluating the two-stage GLM using a nested cross-
validation.
Data:

data matrices Xpre 2 RN ´T1 , Xevk 2 RN ´T2 for pre-stimulus and
post-stimulus data, and the corresponding data category label y∈{0,1}N,
where T1 ¼ tPpre; t

BHA
pre ; tphasepre

h i
, T2 ¼ tPevk þ tBHAevk ,

and Xpre ¼ XP
pre;X

BHA
pre ;Xphase

pre

h i
, Xevk ¼ XP

evk;X
BHA
evk

� �

Hyper-parameters:
the elastic-net mixing parameter α (set as 0.95), regularization parameters λ1
and λ2

Output:

weight vectors β*pre ¼ βPpre; β
BHA
pre ; βphasepre

h i
, β*evk ¼ βPevk; β

BHA
evk

� �
,

and the corresponding categorical classification accuracy d0pre , d
0
evk

CV-1: Split the data into 5 folds; CV-2: Split the training set in CV1 into 10 folds.
for each CV-1 split XCV1

train;X
CV1
test


 �
do :

Step-1: fit the elastic-net problem for post-stimulus features:

for the ith CV-2 split of XCV1
train : XðiÞ

evk;train;X
ðiÞ
evk;test

n o
do:

for λ1←λmax to ϵλmax (decrement λ1) do:
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• solve elastic-net problem (1) using coordinate descent;
(see Supplementary Methods for details)

• estimate the deviance of the solution on XðiÞ
evk;test ;

• find the optimal λ1 using CV-2 average, and solve (1) for β*evk using the entire
XCV1
train ;

• evaluate d0evk on XCV1
test .

Step-2: fix β*evk and fit group elastic-net problem for pre-stimulus features:

for the ith CV-2 split of XCV1
train : XðiÞ

pre;train;X
ðiÞ
pre;test

n o
do:

for λ2←λmax to ελmax (decrement λ2) do:

• solve group elastic-net problem (2) using block coordinate descent;
(see Supplementary Methods for details)

• estimate the deviance of the solution on XðiÞ
pre;test ;

• find the optimal λ2 using CV-2 average, and solve (2) for β*pre using the entire

XCV1
train ;

• evaluate d0pre on XCV1
test ;

• The modulation index (MI) is estimated as MI ¼ XCV1
pre;testβ

*
pre .

• Estimate the overall mean d0pre and d0evk based on 5-fold CV-1.

Cross-electrode correlation in pre-stimulus MI. To evaluate the spatial prop-
erties of the pre-stimulus modulation effect, we computed the correlation of the
single trial pre-stimulus MI between category-selective electrodes in each subject.
For the ith category-selective electrode, we got MIi= Xpre,iβpre,i from the GLM. The
cross-electrode correlation between two category-selective electrodes i and j was
estimated by computing the correlation coefficient between MIi and MIj across all
trials. To avoid confounding effect from local spatial correlation between two
nearby electrodes, we only considered a pair of electrodes that were > 2 cm apart
from each other. For each subject, the mean cross-electrode correlation was esti-
mated by averaging the pairwise correlation coefficients across all such pairs of
category-selective electrodes.

Permutation testing was used to test for significance of the cross-electrode MI
correlations (Fig. 2d). Specifically, for each permutation, we randomly shuffled the
category condition of all the trials and repeat the above analysis to compute the
mean cross-electrode correlation coefficients for electrodes with the same/different
category selectivity. This process was repeated for 1000 times to get the histogram
of the null distribution of the averaged correlation coefficient.

Autocorrelation in MI. To evaluate the temporal properties of the pre-stimulus
modulation effect, we computed the autocorrelation of the single trial MI between
consecutive trials with lags ranging from 1 to 20 in each category-selective elec-
trode. Specifically, for any given electrode, the autocorrelation with lag k is

rk ¼
PT�k

t¼1
MI tð Þ�MIð Þ MI tþkð Þ�MIð ÞPT

t¼1
MI tð Þ�MIð Þ MI tð Þ�MIð Þ . To evaluate the temporal property, we tested for

the significance of the first-order autocorrelation, since it is essential for any
temporal dependencies caused by slow-fluctuation in the signal. Specifically, the
upper bound of the 95% confidence interval was approximately estimated as 2=

ffiffiffiffi
T

p
where T is the total number of trials.

Permutation test for differences based on high vs low MI. Permutation test was
used to test for significance of the differences in RT, pre-stimulus stP, and pre-
stimulus stHBA based on MI in this study (Fig. 2d, Fig. 3b). In order to construct a
surrogated distribution of the MI, in the ith permutation we generated random

projection weight vector βðiÞ ¼ β ið Þ
1 ; ¼ ; βðiÞT1

h i
2 RT1 , such that βðiÞ

���
���
0
¼ βpre

���
���
0
.

Specifically, let n ¼ βpre

���
���
0
, we randomly drew p1; ¼ ; pnf g � 1; ¼ ;T1f g, and

then βðiÞp � Nð0; 1Þ if p 2 p1; ¼ ; pnf g, βðiÞp ¼ 0 otherwise. Then we computed

MI ¼ Xpreβ
ðiÞ and sorted the trials according to this permuted MI in order to

compute the differences in RT, pre-stimulus stP, and pre-stimulus stHBA between
trials in the top quarter and trials in the bottom quarter. We repeated this process
1000 times for each electrode, and the histograms of those differences were used as
the null distributions based on permuted MI.

Correlation between post-stimulus discriminant activity and behavior. We
used the loadings in Step 1 of the two-stage model, i.e. Xpostβpost, as the neural
metric for post-stimulus discriminant activity. The linear correlation between
Xpostβpost and RT for each repeated trial in the preferred condition was estimated in
each electrode.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dataset generated during the current study will be made available from the authors
upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. The source data underlying Figs. 1–4 are provided as a
Source Data file.

Code availability
A demo code of the main algorithm with sample data can be found at https://github.com/
yuanningli/two-stage-GLM. The completely developed code that operates on the full
dataset will be made available from the authors upon reasonable request.
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